Convert from
μA with Z = Ω  
 

dBμV

=
\( 20 \cdot log_{10}(\mu A) + 20 \cdot log_{10}(Z) \)

dBmV

=
\( 20 \cdot log_{10}(\mu A) + 20 \cdot log_{10}(Z) - 60 \)

dBV

=
\( 20 \cdot log_{10}(\mu A) + 20 \cdot log_{10}(Z) - 120 \)

dBμA

=
\( 20 \cdot log_{10}(\mu A) \)

dBmA

=
\( 20 \cdot log_{10}(\mu A) - 60 \)

dBA

=
\( 20 \cdot log_{10}(\mu A) - 120 \)

dBpW

=
\( 20 \cdot log_{10}(\mu A) + 10 \cdot log_{10}(Z) \)

dBm

=
\( 20 \cdot log_{10}(\mu A) + 10 \cdot log_{10}(Z) - 90 \)

dBW

=
\( 20 \cdot log_{10}(\mu A) + 10 \cdot log_{10}(Z) - 120 \)
 

μV

=
\( \mu A \cdot Z \)

mV

=
\( \mu A \cdot Z \cdot 10^{-3} \)

V

=
\( \mu A \cdot Z \cdot 10^{-6} \)

mA

=
\( \mu A \cdot 10^{-3} \)

A

=
\( \mu A \cdot 10^{-6} \)

pW

=
\( \mu A^2 \cdot Z \)

mW

=
\( \mu A^2 \cdot Z \cdot 10^{-9} \)

W

=
\( \mu A^2 \cdot Z \cdot 10^{-12}\)
 
Loading...